| ⊢ | (fin w) ; f ≡ (w ∧ f) | FinChopEqvDiamond | 
Proof for  ⊃ :
| 1 | ⊢ (fin w) ; f ≡ (w ∧ f) ∨ ((fin w) ; f)                      | |
| 2  | ⊢  (w ∧ f) ≡ (w ∧ f) ∨ (w ∧ f)                           | |
| 3  | ⊢ (fin w) ; f ∧¬ (w ∧ f) ≡ ((fin w) ; f) ∧¬ (w ∧ f) | |
| 4  | ⊢ (fin w) ; f ⊃ (w ∧ f)                                        | 
qed
Proof of ⊂:
| 1 | ⊢ (fin w) ; f ≡ (w ∧ f) ∨ ((fin w) ; f)                        | |
| 2  | ⊢  (w ∧ f) ≡ (w ∧ f) ∨ (w ∧ f)                             | |
| 3  | ⊢  (w ∧ f) ∧¬((fin w) ; f) ≡ (w ∧ f) ∧¬ ((fin w) ; f) | |
| 4  | ⊢  (w ∧ f) ⊃ (fin w) ; f                                    | 
qed
The following important theorem demonstrates how to pass information from the final state of a subinterval to the starting state of a subinterval immediately following it.