| ⊢ | empty | DiamondEmpty | 
Proof:
qed
Here are some use derived rules for linear time temporal logic. We omit their proofs:
| ⊢ | f ≡ g ⇒ ⊢ f ≡ g | NextEqvNext | 
| ⊢ | f ∧ g ⊃ h ⇒ ⊢ f ∧ g ⊃ h | NextAndNextImpNextRule | 
| ⊢ | f ∧ g ≡ h ⇒ ⊢ f ∧ g ≡ h | NextAndNextEqvNextRule | 
| ⊢ | f ≡ g ⇒ ⊢ f ≡ g | WeakNextEqvWeakNext | 
| ⊢ | f ⊃ g ⇒ ⊢ f ⊃ g | DiamondImpDiamond | 
| ⊢ | f ≡ g ⇒ ⊢ f ≡ g | DiamondEqvDiamond | 
| ⊢ | f ≡ g ⇒ ⊢ f ≡ g | BoxEqvBox | 
| ⊢ | f ∧ g ⊃ h ⇒ ⊢ f ∧ g ⊃ h | BoxAndBoxImpBoxRule | 
| ⊢ | f ∧ g ≡ h ⇒ ⊢ f ∧ g ≡ h | BoxAndBoxEqvBoxRule | 
| ⊢ | f ⊃ g, ⊢more ∧ f ⊃ f ⇒ ⊢ f ⊃ g | BoxIntro | 
| ⊢ | (f ∧¬g) ⊃ f ⇒ ⊢ f ⊃ g | DiamondIntro | 
| ⊢ | f ⊃ f ⇒ ⊢¬f | NextLoop | 
| ⊢ | f ∧¬g ⊃ f ∧¬ g ⇒ ⊢ f ⊃ g | NextContra | 
| ⊢ | f ⊃ f ⇒ ⊢ f | WeakNextBoxInduct | 
| ⊢ | empty ⊃ f, ⊢ f ⊃ f ⇒ ⊢ f | EmptyNextInducta | 
| ⊢ | empty ∧ f ⊃ g,⊢ (f ⊃ g) ∧ f ⊃ g ⇒ ⊢ f ⊃ g | EmptyNextInductb | 
| ⊢ | f ⊃ g ⇒ ⊢fin f ⊃ fin g | FinImpFin | 
| ⊢ | f ≡ g ⇒ ⊢fin f ≡fin g | FinEqvFin | 
| ⊢ | f ∧ g ⊃ h ⇒ ⊢fin f ∧fin g ⊃ fin h | FinAndFinImpFinRule | 
| ⊢ | f ∧ g ≡ h ⇒ ⊢fin f ∧fin g ≡fin h | FinAndFinEqvFinRule | 
| ⊢ | f ≡ g ⇒ ⊢halt f ≡halt g | HaltEqvHalt | 
Note that ImpChain can be viewed as a special case of Prop. If desired, a deduction theorem can also be proved.
We now give proofs of some derived inference rules and theorems: