| ⊢ (skip ∧ T) ⌢ f ≡ T ∧ f | NLoneAndSkipChopEqvNLoneAndNext | 
Proof for ⊃:
| 1 | (skip ∧ T) ⌢ f  ⊃  (skip ∧ T) | |
| 2  |  (skip ∧ T) ≡more ∧ T         | |
| 3  | (skip ∧ T) ⌢ f  ⊃ T          | |
| 4  | (skip ∧ T) ⌢ f  ⊃ skip ⌢ f   | |
| 5  | (skip ∧ T) ⌢ f  ⊃  f          | 4, def. of                                | 
| 6  | (skip ∧ T) ⌢ f  ⊃ T ∧ f     | 
qed
Proof for ⊂:
| 1 |  f  ⊃ more                                         | |
| 2  | more ∧ T  ⊃  (more  ⊃ T)               | |
| 3  | T ∧ f  ⊃  (more  ⊃ T)                 | |
| 4  |  (more  ⊃ T) ∧ f  ⊃ (skip ∧ T) ⌢ f | |
| 5  | T ∧ f  ⊃ (skip ∧ T) ⌢ f             | 
qed