| ⊢ (skip ∧ T) ⊃ (skip ⊃ T) | DfSkipAndNLoneImpBfSkipImpNLone | 
Proof:
| 1 |  (skip ∧ T) ≡more ∧ T             | |
| 2  |  (skip ∧¬T) ≡more ∧¬T         | |
| 3  | more ∧ T  ⊃ ¬(more ∧ T)          | |
| 4  |  (skip ∧ T)  ⊃ ¬ (skip ∧¬T)      | |
| 5  | skip ∧¬T ≡¬(skip  ⊃ T)          | |
| 6  |  (skip ∧¬T) ≡¬(skip  ⊃ T)      | |
| 7  | ¬ (skip ∧¬T) ≡¬¬(skip  ⊃ T) | |
| 8  |  (skip ∧ T)  ⊃ ¬¬(skip  ⊃ T)    | |
| 9  |  (skip ∧ T)  ⊃  (skip  ⊃ T)         | 8, def. of                                | 
qed