| ⊢ | ¬w ∧empty ⊃ g | WhileElim | |
| ⊢ w ∧ (f ∧more) ; g ⊃ g | |||
| ⇒ ⊢ while w do f ⊃ g | 
Proof:
| 1 | ⊢ while w do f ≡                | |
| (¬w ∧empty) ∨ (w ∧ (f ∧more) ; while w do f) | ||
| 2  | ⊢ ¬w ∧empty ⊃ g                             | given                                        | 
| 3  | ⊢ w ∧ (f ∧more) ; g ⊃ g                      | given                                        | 
| 4  | ⊢ while w do f ∧¬g ⊃             | |
| (f ∧more) ; while w do f ∧¬((f ∧more) ; g)     | ||
| 5  | ⊢ f ∧more ⊃more                                         | |
| 6  | ⊢ while w do f ⊃ g                             | 
qed