| ⊢ while w do f ≡ (¬w ∧empty) ∨ (w ∧ (f ∧more) ; while w do f) | WhileEqvEmptyOrChopWhile | 
Proof:
| 1  | ⊢ (w ∧ f)∗≡empty ∨ ((w ∧ f) ∧more) ; (w ∧ f)∗       | |
| 2  | ⊢ (w ∧ f) ∧more ≡ w ∧ (f ∧more)                               | |
| 3  | ⊢ ((w ∧ f) ∧more) ; (w ∧ f)∗≡ (w ∧ f ∧more) ; (w ∧ f)∗ | |
| 4  | ⊢ (w ∧ f)∗≡empty ∨ (w ∧ f ∧more) ; (w ∧ f)∗        | |
| 5  | ⊢ (w ∧ f)∗∧fin ¬w ≡                    | |
| (empty ∧fin ¬w) ∨ ((w ∧ f ∧more) ; (w ∧ f)∗∧fin ¬w)       | ||
| 6  | ⊢ empty ∧fin ¬w ≡¬w ∧empty                                           | |
| 7  | ⊢ (w ∧ f ∧more) ; (w ∧ f)∗≡ w ∧ (f ∧more) ; (w ∧ f)∗  | |
| 8  | ⊢ (f ∧more) ; (w ∧ f)∗∧fin ¬w ≡              | |
| (f ∧more) ; ((w ∧ f)∗∧fin ¬w)                                     | ||
| 9  | ⊢ (w ∧ f)∗∧fin ¬w ≡                    | |
| (¬w ∧empty) ∨ (w ∧ (f ∧more) ; ((w ∧ f)∗∧fin ¬w))         | ||
| 10 | ⊢ while w do f ≡                        | |
| (¬w ∧empty) ∨ (w ∧ (f ∧more) ; while w do f)                   | 9, def. of while            | 
qed