| ⊢ | (f ⊃ g) ⊃ f∗ ⊃ g∗ | BaCSImpCS | 
Proof:
| 1  | ⊢ f∗≡empty ∨ (f ∧more) ; f∗               | |
| 2  | ⊢ g∗≡empty ∨ (g ∧more) ; g∗               | |
| 3  | ⊢ f∗∧¬(g∗) ⊃ (f ∧more) ; f∗∧¬((g ∧more) ; g∗) | |
| 4  | ⊢ (f  ⊃ g) ⊃ (f ∧more ⊃ g ∧more)                     | |
| 5  | ⊢  (f  ⊃ g) ⊃ (f ∧more ⊃ g ∧more)                    | |
| 6  | ⊢  (f ∧more ⊃ g ∧more) ⊃ (f ∧more) ; f∗ ⊃    | |
| (g ∧more) ; f∗                           | ||
| 7  | ⊢  (f  ⊃ g) ∧ (f ∧more) ; f∗⊃ (g ∧more) ; f∗    | |
| 8  | ⊢ (g ∧more) ; f∗∧¬((g ∧more) ; g∗) ⊃        | |
| (g ∧more) ; (f∗∧¬(g∗))                                     | ||
| 9  | ⊢ (g ∧more) ; (f∗∧¬(g∗)) ⊃more ; (f∗∧¬(g∗))    | |
| 10 | ⊢  (f  ⊃ g) ⊃more ; (f∗∧¬(g∗))  ⊃         | |
| more ; ( (f  ⊃ g) ∧ f∗∧¬(g∗))                             | ||
| 11 | ⊢  (f  ⊃ g) ∧ f∗∧¬(g∗) ⊃              | |
| more ; ( (f  ⊃ g) ∧ f∗∧¬(g∗))                             | ||
| 12 | ⊢ ¬( (f  ⊃ g) ∧ f∗∧¬(g∗))                             | |
| 13 | ⊢  (f  ⊃ g) ⊃ f∗ ⊃ g∗                   | |
qed
The following corollary can be readily verified: