| ⊢ (f ⊃ g) ⊃ f ⊃ g | BaImpDist | 
Proof:
| 1 | ⊢  (f  ⊃ g) ⊃ ( f  ⊃  g)         | |
| 2  | ⊢  ( (f  ⊃ g)  ⊃ ( f  ⊃  g))    | |
| 3  | ⊢  ( (f  ⊃ g)  ⊃ ( f  ⊃  g)) ⊃ | |
| (  (f  ⊃ g)  ⊃ (  f  ⊃  g))       | ||
| 4  | ⊢  (f  ⊃ g) ⊃ (  f  ⊃  g)      | |
| 5  | ⊢  (f  ⊃ g) ≡ (f  ⊃ g)         | |
| 6  | ⊢  f ≡ f                        | |
| 7  | ⊢  g ≡ g                        | |
| 8  | ⊢  (f  ⊃ g) ⊃ ( f  ⊃  g)         | 
qed
Here are some easy corollaries:
| ⊢ | (f ≡ g) ⊃ f ≡ g | BaImpBaEqvBa | 
| ⊢ | f ⊃ g ⇒ f ⊃ g | BaImpBa | 
| ⊢ | f ≡ g ⇒ f ≡ g | BaEqvBa | 
| ⊢ | f ⊃ g ⇒ f ⊃ g | DaImpDa | 
| ⊢ | f ≡ g ⇒ f ≡ g | DaEqvDa | 
| ⊢ | (f ∧ g) ≡ f ∧ g | BaAndEqv | 
| ⊢ | (f1 ∧… ∧ fn) ≡ f1 ∧… ∧ fn | BaAndGroupEqv |