Let M⟦…⟧(…) be the “meaning” function from Propositions ×State to {tt,ff} and let σ0 be a state then
| M⟦true⟧(σ0)     | ≜ | tt                                   | 
| M⟦P⟧(σ0)         | ≜ | σ0(P)                             | 
| M⟦¬f⟧(σ0)       | ≜ | not (M⟦f⟧(σ
0))                 | 
| M⟦f1 ∧ f2⟧(σ0) | ≜ | (M⟦f1⟧(σ0) and M⟦f2⟧(σ0)) | 
Let σ0(P) = tt and σ0(Q) = ff.
| M⟦P ∨ Q⟧(σ0)                                     | |
| = | M⟦¬(¬P ∧¬Q)⟧(σ0)                            | 
| = | not (M⟦¬P ∧¬Q⟧(σ0))                         | 
| = | not (M⟦¬P⟧(σ0) and M⟦¬Q⟧(σ0))            | 
| = | not (not (M⟦P⟧(σ0)) and not (M⟦Q⟧(σ0))) | 
| = | not (not (σ
0(P)) and not (σ0(Q)))           | 
| = | not (not (tt) and not (ff))                       | 
| = | not (ff and tt)                                      | 
| = | not (ff)                                               | 
| = | tt                                                      |