| ⊢ | ( f) g ≡ (f g) | NextYields | 
Proof:
| 1 | ⊢ ( f) ; ¬g ≡ (f ; ¬g)        | |
| 2  | ⊢ ¬(( f) ; ¬g) ≡¬ (f ; ¬g) | |
| 3  | ⊢ ( f)  g ≡¬ (f ; ¬g)        | 2, def. of    | 
| 4  | ⊢ ¬ (f ; ¬g) ≡¬(f ; ¬g)   | |
| 5  | ⊢ ( f)  g ≡¬(f ; ¬g)        | |
| 6  | ⊢ ( f)  g ≡ (f  g)             | 5, def. of    | 
qed