| ⊢ f⋆ ≡ (f⋆ ⌢ empty) ∨ fω | SChopStarEqvSChopstarChopEmptyOrChopOmega | 
Proof:
| 1 | finite ∨¬finite                       | |
| 2  | finite ∨inf                            | 1, def. of inf                 | 
| 3  | finite  ⊃ (f⋆ ⌢ empty) ≡ f⋆ | |
| 4  | inf  ⊃ f⋆ ≡ (f⋆ ∧inf)        | |
| 5  | inf  ⊃ f⋆ ≡ fω                | 4, def. of chop-omega     | 
| 6  | f⋆ ≡ (f⋆ ⌢ empty) ∨ fω     | 
qed