| ⊢ | f ; f ; … ; f ⊃ f∗ | ChopGroupImpCS | 
The proof is by induction on the number of ¡chops¿.
Proof when no ¡chops¿:
| 1 | ⊢ f ⊃ f∗ | 
qed
Proof for at n occurrences of ¡chops¿ where n ≥ 1:
| 1 | ⊢ f ; … ; f ⊃ f∗     | induction for n − 1 ¡chops¿ | 
| 2  | ⊢ f ; f ; … ; f ⊃ f ; f∗ | |
| 3  | ⊢ f ; f∗⊃ f∗      | |
| 4  | ⊢ f ; f ; … ; f ⊃ f∗   | 
qed