| ⊢ | while w do f ≡if w then f ; (while w do f) else empty | WhileEqvIf | 
Proof:
| 1 | ⊢ while w do f ≡ (w ∧ f)∗∧fin ¬w                   | def. of while            | 
| 2  | ⊢ (w ∧ f)∗≡empty ∨ ((w ∧ f) ; (w ∧ f)∗)            | |
| 3  | ⊢ empty ∧fin ¬w ≡¬w ∧empty                                 | |
| 4  | ⊢ (w ∧ f) ; (w ∧ f)∗≡ w ∧ f ; (w ∧ f)∗        | |
| 5  | ⊢ (f ; (w ∧ f)∗) ∧fin ¬w ≡ f ; ((w ∧ f)∗∧fin ¬w) | |
| 6  | ⊢ f ; ((w ∧ f)∗∧fin ¬w) ≡ f ; while w do f           | def. of while            | 
| 7  | ⊢ while w do f                                          | |
| ≡ (¬w ∧empty) ∨ (w ∧ (f ; while w do f))                | ||
| 8  | ⊢ while w do f ≡if w then f ; (while w do f) else empty  | 
qed