| ⊢ | empty ⊃ g, ⊢ (f ∧more) ; g ⊃ g ⇒ ⊢ f∗ ⊃ g | CSElim | 
Proof:
| 1 | ⊢ f∗≡empty ∨ (f ∧more) ; f∗            | |
| 2  | ⊢ empty  ⊃ g                                       | given                   | 
| 3  | ⊢ (f ∧more) ; g  ⊃ g                              | given                   | 
| 4  | ⊢ f∗∧¬g ⊃ (f ∧more) ; f∗∧¬((f ∧more) ; g) | |
| 5  | ⊢ f ∧more ⊃more                                               | |
| 6  | ⊢ f∗⊃ g                                           | 
qed