| ⊢ | f∗∧more ≡ (f ∧more) ; f∗ | CSAndMoreEqvAndMoreChop | 
Proof for  ⊃ :
| 1 | ⊢ (empty ∨ (f ∧more) ; f∗) ∧more ⊃ (f ∧more) ; f∗ | |
| 2  | ⊢ f∗∧more ⊃ (f ∧more) ; f∗               | 1, def. of ∗ | 
qed
Proof for ⊂:
| 1 | ⊢ f∗≡empty ∨ (f ∧more) ; f∗ | |
| 2  | ⊢ (f ∧more) ; f∗⊃ f∗      | |
| 3  | ⊢ (f ∧more) ; f∗⊃more           | |
| 4  | ⊢ (f ∧more) ; f∗⊃ f∗∧more  | 
qed