| ⊢ | f ⊃ g ⇒ ⊢ f ⊃ g | BoxImpBoxRule | 
Proof:
| 1 | ⊢ f ⊃ g                                      | given                      | 
| 2  | ⊢ ¬g ⊃¬f                                   | |
| 3  | ⊢  (¬g  ⊃ ¬f)                                    | |
| 4  | ⊢  (¬g  ⊃ ¬f) ⊃ (true ; ¬g)  ⊃ (true ; ¬f) | |
| 5  | ⊢ true ; ¬g ⊃true ; ¬f                        | |
| 6  | ⊢ ¬g ⊃¬f                                 | 5, def. of            | 
| 7  | ⊢ ¬¬f ⊃¬¬g                            | |
| 8  | ⊢  f ⊃ g                                    | 7, def. of            | 
qed