| ⊢ | f ∧¬g ⊃ (g ∧more) ; f ⇒ ⊢ f ⊃ g+ | ChopPlusIntro | 
Proof:
| 1 | ⊢ f ∧¬g ⊃ (g ∧more) ; f                            | given                   | 
| 2  | ⊢ g+ ≡ g ∨ (g ∧more) ; g+                                    | |
| 3  | ⊢ f ∧¬(g+) ⊃ (g ∧more) ; f ∧¬((g ∧more) ; g+) | |
| 4  | ⊢ g ∧more ⊃more                                                   | |
| 5  | ⊢ f ⊃ g+                                                               | 
qed