| ⊢ | (f ⊃ g) ⊃ f ⊃ g | NextImpDist | 
Proof:
| 1 | ⊢ ¬(f  ⊃ g) ≡ f ∧¬g                         | |
| 2  | ⊢ skip ; ¬(f  ⊃ g) ≡skip ; (f ∧¬g)              | |
| 3  | ⊢ f ⊃ g ∨ (f ∧¬g)                                 | |
| 4  | ⊢ skip ; f ⊃ (skip ; g) ∨ (skip ; (f ∧¬g))         | |
| 5  | ⊢ ¬(skip ; (f ∧¬g)) ⊃ (skip ; f)  ⊃ (skip ; g)   | |
| 6  | ⊢ ¬(skip ; ¬(f  ⊃ g)) ⊃ (skip ; f)  ⊃ (skip ; g) | |
| 7  | ⊢ ¬¬(f  ⊃ g) ⊃ f  ⊃  g                    | 6, def. of                | 
| 8  | ⊢  (f  ⊃ g) ⊃¬¬(f  ⊃ g)                      | |
| 9  | ⊢  (f  ⊃ g) ⊃ f  ⊃  g                        | 
qed