| ⊢ | f ≡ f | DaEqvDiDt | 
Proof:
| 1 | ⊢ true ; f ≡ f                   | |
| 2  | ⊢ (true ; f) ; true ≡ ( f) ; true     | |
| 3  | ⊢ (true ; f) ; true ≡ f          | 2, def. of                | 
| 4  | ⊢ (true ; f) ; true ≡true ; f ; true | |
| 5  | ⊢ true ; f ; true ≡ f            | |
| 6  | ⊢  f ≡ f                      | 5, def. of                | 
qed
Here is a corollary of theorems DaEqvDtDi and DaEqvDiDt: