Let P denote the proposition “The moon is made of cheese”
Let Q denote the proposition “The moon is red”
The sentence “If the moon is red, it is not made of cheese” is translated as propositional formula Q ⊃ (¬P)
|  P  |  Q  | P ∧ Q | 
| false | false |  false  | 
| false   | true |  false  | 
| true | false |  false  | 
| true | true |  true   | 
true iff (if and only if) both operands are true
|  P  |  Q  | P ∨ Q | 
| false | false |  false  | 
| false   | true |  true   | 
| true | false |  true   | 
| true | true |  true   | 
true iff (if and only if) either operands are true
|  P  | ¬P  | 
| false   | true | 
| true | false | 
|  P  |  Q  | P ⊃ Q | 
| false | false |  true   | 
| false   | true |  true   | 
| true | false |  false   | 
| true | true |  true   | 
true iff first is true and second is true or the first is false.
|  P  |  Q  | P ≡ Q | 
| false | false |  true   | 
| false   | true |  false   | 
| true | false |  false   | 
| true | true |  true   | 
true iff both operands have the same value.
| P   | Q    | ¬P | (¬P) ⊃Q | P ∧((¬P) ⊃Q) | 
| false | false | |||
| false   | true    | |||
| true  | false | |||
| true  | true  | |||
The values in the last column determine the value of the proposition: