Summary of the syntax of Expressions:
Summary of the syntax of Formulae:
Syntax of Integer Expressions in BNF:
| ie ::= | z | A | ig(ie1,…,ien) | A |fin A | 
where z is an integer constant and ig an integer operator.
Syntax of Boolean Expressions in BNF:
| be ::= | b | Q | bg(be1,…,ben) | Q |fin Q | 
where b is a Boolean constant and bg a Boolean operator.
Syntax of First Order Formulae in BNF:
| f ::= | true | h(e1,…,en) |¬f | f1 ∧ f2 |∀V   f |skip | f1 ; f2 | f∗ | 
where h is a Boolean predicate over integer or Boolean expressions.
Derived formulae:
| false     | ≜ | ¬true                       | 
| f1 ∨ f2 | ≜ | ¬(¬f1 ∧¬f2)            | 
| f1 ⊃ f2 | ≜ | ¬f1 ∨ f2                      | 
| f1 ≡ f2 | ≜ | (f1 ⊃ f2) ∧ (f2 ⊃ f1) | 
| ∃V  f    | ≜ | ¬∀V  ¬f                | 
|  f        | ≜ | skip ; f                  | 
|  f        | ≜ | true ; f                  | 
|  f        | ≜ | ¬( ¬f)                     | 
| …        | ||