A
integer variable, value of A in the current state
A = 0 ∧ (skip ; (A = 1 ∧empty))
|                      A = 0 : |   ●   |   …    | 
| A = 0 | ||
|                         skip : |   ●   |   ●   | 
|              (A = 1 ∧empty) : |   ●   | |
| A = 1 | ||
|          skip ; (A = 1 ∧empty) : |   ●   |   ●   | 
| A = 1 | ||
| A = 0 ∧ (skip ; (A = 1 ∧empty)) : |   ●   |   ●   | 
| A = 0 | A = 1 | |
A
the value of A in the next state
A = 0 ∧skip ∧ ( A) = 1
|               A = 0 : |   ●   |   …    | 
| A = 0 | ||
|        skip ∧ ( A) = 1 : |   ●   |   ●   | 
| A = 1 | ||
| A = 0 ∧skip ∧ ( A) = 1 : |   ●   |   ●   | 
| A = 0 | A = 1 | |
A := e
unit assignment, A := e ≜ ( A) = e
fin A
the value of A in the last state
A = 0 ∧skip2 ∧ (fin A) = 1
|                  A = 0 : |   ●   | … | |
| A = 0 | |||
|        skip2 ∧ (fin A) = 1 : |   ●   |  ●  |   ●   | 
| A = 1 | |||
| A = 0 ∧skip2 ∧ (fin A) = 1 : |   ●   |  ●  |   ●   | 
| A = 0 | A = 1 | ||
A ← e
temporal assignment, A ← e ≜ (fin A) = e
A gets e
A continually gets e, A gets e ≜(skip ⊃ A ← e)
stable A
A remains stable, stable A ≜ A gets A
∃X f
X acts as local variable in f
| A = 0 ∧skip2 ∧ A gets A + 1 : |    ●    |   ●   |   ●   | |
| A = 0 | A = 1 | A = 2 | ||
| ∃A  | A = 0 ∧skip2 ∧         : | |||
|   A gets A + 1 ∧ B = fin(A) : |    ●    |   ●   |   ●   | |
| B = 2 | ||||
len(n)
length of an interval, len(n) ≜∃I (I = 0) ∧ (I gets I + 1) ∧ (I ← n)