Let M⟦…⟧(…) be the “meaning” function from Formulae × Σ to Bool (set of Boolean values, {tt,ff}) and let σ0 be a state then
| M⟦true⟧(σ0)               | =   | tt                                | 
| M⟦h(e1,…,en)⟧(σ0) = tt |  iff  | h(E⟦e1⟧(σ0),…,E⟦en⟧(σ0)) | 
| M⟦¬f⟧(σ0) = tt           |  iff  | not (M⟦f⟧(σ0) = tt)         | 
| M⟦f1 ∧ f2⟧(σ0) = tt     |  iff  | (M⟦f1⟧(σ0) = tt) and       | 
| (M⟦f2⟧(σ0) = tt)            | 
| (M⟦¬(Account < 0)⟧(σ0) = tt)   |  iff  | 
| not (M⟦Account < 0⟧(σ0) = tt)   |  iff  | 
| not (E⟦Account⟧(σ0) <E⟦0⟧(σ0)) |  iff  | 
| not (σ0(Account) < 0)              | 
| (M⟦Account = 50 ∧In ≥ 0⟧(σ0) = tt)                          |  iff  | 
| (M⟦Account = 50⟧(σ0) = tt) and (M⟦In ≥ 0⟧(σ0) = tt)     |  iff  | 
| (E⟦Account⟧(σ0) =E⟦50⟧(σ0)) and (E⟦In⟧(σ0) ≥E⟦0⟧(σ0)) |  iff  | 
| σ0(Account) =50 and σ0(In) ≥0                                  | |
Let σ0 ∼v σ′0 denote that the states σ0 and σ′0 are identical with the possible exception of the mapping for the variable v.
Let σ0 and σ′0 be states.
Then σ0 ∼In σ′0.
The semantics of ∀V f is defined in terms of σ0 ∼V σ′0
| M⟦∀V  f⟧(σ0) = tt |  iff  | (for all σ′0 s.t. σ0 ∼V  σ′0,M⟦f⟧(σ′0) = tt) | 
| M⟦∀In  In ≥ 0⟧(σ0) = tt                               |  iff  | 
| (for all σ′0 s.t. σ0 ∼In σ′0,M⟦In ≥ 0⟧(σ′0) = tt) |  iff  | 
| (for all σ′0 s.t. σ0 ∼In σ′0,σ′0(In) ≥0)             |