Propositional Interval Temporal Logic (PITL) is a
| f ::= | p |¬f |f1 ∨ f2 |skip |f1 ; f2 |f∗ | 
where
|  f    | ≜ | skip ; f        | next | 
|  f     | ≜ | ¬¬f          | weak next | 
| more  | ≜ |  true            | interval with ≥ 2 states | 
| empty | ≜ | ¬more          | one state interval | 
| inf     | ≜ | true ; false      | infinite interval | 
| finite  | ≜ | ¬inf             | finite interval | 
| fmore  | ≜ | more ∧finite  | finite with ≥ 2 states | 
|  f     | ≜ | finite ; f       | sometimes | 
|  f     | ≜ | ¬¬f          | always | 
|  f     | ≜ | f ; true         | some initial subinterval | 
|  f     | ≜ | ¬( ¬f)         | all initial subintervals | 
|  f     | ≜ | finite ; f ; true | some subinterval | 
|  f     | ≜ | ¬( ¬f)         | all subintervals | 
| etc.    | |||
The main semantic notion is interval which is a sequence of states.
Let
| M⟦f1 ; f2⟧(σ) = tt iff                                                   | 
| ( exists k, s.t. M⟦f1⟧(σ0…σk) = tt and M⟦f2⟧(σk…σ|σ|) = tt) | 
|  or (σ is infinite  and M⟦f1⟧(σ) = tt)                               | 
| M⟦f∗⟧(σ) = tt iff                                                     | 
|  if σ is finite  then                                                     | 
|     ( exists l0,…,ln s.t. l0 = 0 and ln = |σ|and                | 
|       for all 0 ≤ i < n,li ≤ li+1 and M⟦f⟧(σli…σli+1) = tt) | 
|  else                                                                       | 
|     ( exists l0,…,ln s.t. l0 = 0 and                                 | 
|      M⟦f⟧(σln…σ|σ|) = tt and                                      | 
|       for all 0 ≤ i < n,li ≤ li+1 and M⟦f⟧(σli…σli+1) = tt) | 
|      or                                                                    | 
|     ( exists  an infinite number of li s.t. l0 = 0 and          | 
|       for all 0 ≤ i,li ≤ li+1 and M⟦f⟧(σli…σli+1) = tt)       | 
| PropAx           | All axioms for propositional logic                             | 
| ChopAssoc        | ⊢  (f0 ; f1) ; f2 ≡ f0 ; (f1 ; f2)                              | 
| OrChopImp      | ⊢  (f0 ∨ f1) ; f2  ⊃ (f0 ; f2) ∨ (f1 ; f2)                  | 
| ChopOrImp      | ⊢  f0 ; (f1 ∨ f2)  ⊃ (f0 ; f1) ∨ (f0 ; f2)                  | 
| EmptyChop      | ⊢  empty ; f1 ≡ f1                                                         | 
| ChopEmpty      | ⊢  f1 ; empty ≡ f1                                                         | 
| BiBoxChop       | ⊢  (f0  ⊃ f1) ∧(f2 ⊃ f3)  ⊃ (f0 ; f2)  ⊃ (f1 ; f3) | 
| StateImpBi       | ⊢  p ⊃  p                                                | 
| NextImpWNext | ⊢   f0  ⊃ ¬¬f0                                                           | 
| SkipAnd           | ⊢  (skip ∧ f0) ; true  ⊃ ¬((skip ∧¬f0) ; true)            | 
| BoxInduct        | ⊢  f0 ∧(f0  ⊃ ¬¬f0)  ⊃  f0                                     | 
| ChopStarEqv    | ⊢  f0∗≡ (empty ∨ ((f0 ∧more) ; f0∗))                    | 
| ChopStarInduct | ⊢  (inf ∧ f0 ∧(f0  ⊃ (f1 ∧fmore) ; f0))  ⊃ f1∗    | 
| MP                 | ⊢  f0  ⊃ f1 and  ⊢  f0 implies  ⊢  f1                     | 
| BoxGen            | ⊢  f0 implies  ⊢   f0                                                   | 
| BiGen              | ⊢  f0 implies  ⊢   f0                                                   |