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Rationale (3)

An Automated Theorem Prover (ATP) for Interval Temporal
Logic (ITL) has always been a desirable tool. There have been
various attempts to implement such ATPs:

Lite. Shinji Kono (1991 (Prolog), 2008 (Java)).
Tableau-based, exponential in the number of the variables
in the formula and also combinatorial w.r.t. to the nesting
of temporal logic operators.
ITL Library for PVS. Antonio Cau (1997).
Interactive theorem prover for (in)finite first order ITL,
requires expert proof knowledge and has little automation.
DCVALID. Paritosh Pandya (2000).
Quantified Discrete time Duration Calculus (QDDC).
Translate QDDC into WS1S, use decision procedure of
WS1S (MONA, Nils Klarlund and Anders Møller). WS1S
has non-elementary complexity.



Rationale (4)

PITL2Mona. Rodolfo Gomez (2004).
Translate finite Propositional ITL (PITL) into WS1S, use
decision procedure of WS1S (MONA). WS1S has
non-elementary complexity.
FL2CUDD. Ben Moszkowski (2005).
Use a subset of (in)finite PITL called Fusion Logic (FL).
The decision procedure of FL is built on top of Colorado
University Decision Diagram (CUDD, Fabio Somenzi).

So mainly modelchecking or special purpose automated
deduction.

There are off-the-shelf automated proof and counterexample
search tools (ATP) for first-order and equational logic.
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Rationale (5)

Inspired by the work of Peter Höffner, Georg Struth and
Bernhard Möller we proceed as follows:

Introduce Interval Temporal Algebra (ITA). An ITA is
based on Kleene Algebra and Omega Algebra.
Show that PITL is an ITA.
Encode the axiom system for ITA in an off-the shelf ATP
Prover9 (first-order and equational logic, William
McCune).



PITL (6)

Propositional Interval Temporal Logic (PITL) is a
discrete,
linear temporal logic
for both finite and infinite time which includes
a basic construct for sequential composition and
an analog of Kleene star and Omega star



Syntax of PITL (7)

f ::= p | ¬f | f1 ∨ f2 | skip | f1 ; f2 | f ∗

where
skip is an interval (sequence) of 2 states.
f1 ; f2 is called ‘f1 chop f2’ and denotes sequential
composition of two intervals.
f ∗ is called ‘f chopstar’ and denotes (in)finite iteration of
an interval.



Derived formulae (8)

©f =̂ skip ; f next
©w f =̂ ¬©¬f weak next
more =̂ © true interval with ≥ 2 states
empty =̂ ¬more one state interval
inf =̂ true ; false infinite interval
finite =̂ ¬inf finite interval
fmore =̂ more ∧ finite finite with ≥ 2 states
3 f =̂ finite ; f sometimes
2 f =̂ ¬3¬f always
3i f =̂ f ; true some initial subinterval
2i f =̂ ¬(3i ¬f ) all initial subintervals
3a f =̂ finite ; f ; true some subinterval
2a f =̂ ¬(3a ¬f ) all subintervals
etc.



Semantics of PITL (9)

The main semantic notion is interval which is a sequence of
states.
Let

Σ denotes the set of states.
Σ+ denote the set of non-empty finite sequences of
states.
Σω denote the set of infinite sequences of states.
σ denote an interval, σ ∈ Σ+ ∪ Σω.
Let [[. . .]] be the “meaning” (semantic) function from
Σ+ ∪ Σω to {tt, ff}.



Semantics of PITL (10)

[[p]]σ = tt iff σ0(p) = tt
[[¬f ]]σ = tt iff not ([[f ]]σ = tt)
[[f1 ∨ f2]]σ = tt iff [[f1]]σ = tt or [[f2]]σ = tt
[[skip]]σ = tt iff |σ| = 1 where |σ| denotes length of σ
and is defined as number of states minus 1
[[f1 ; f2]]σ = tt iff
(exists k , s.t. [[f1]]σ0...σk = tt and [[f2]]σk ...σ|σ| = tt)
or (σ is infinite and [[f1]]σ = tt)



Semantics of PITL (11)

[[f ∗]]σ = tt iff
if σ is finite then

(exist l0, . . . , ln s.t. l0 = 0 and ln = |σ| and
for all 0 ≤ i < n, li ≤ li+1 and [[f ]]σli ...σli+1

= tt)
else

(exist l0, . . . , ln s.t. l0 = 0 and
[[f ]]σln ...σ|σ| = tt and
for all 0 ≤ i < n, li ≤ li+1 and [[f ]]σli ...σli+1

= tt)
or

(exist an infinite number of li s.t. l0 = 0 and
for all 0 ≤ i, li ≤ li+1 and [[f ]]σli ...σli+1

= tt)



Axiom/proof system for PITL (12)

PropAx All axioms for propositional logic
ChopAssoc ` (f0 ; f1) ; f2 ≡ f0 ; (f1 ; f2)
OrChopImp ` (f0 ∨ f1) ; f2 ⊃ (f0 ; f2) ∨ (f1 ; f2)
ChopOrImp ` f0 ; (f1 ∨ f2) ⊃ (f0 ; f1) ∨ (f0 ; f2)
EmptyChop ` empty ; f1 ≡ f1
ChopEmpty ` f1 ; empty ≡ f1
BiBoxChop ` 2i (f0 ⊃ f1) ∧ 2(f2 ⊃ f3) ⊃ (f0 ; f2) ⊃ (f1 ; f3)
StateImpBi ` p ⊃ 2i p
NextImpWNext ` ©f0 ⊃ ¬©¬f0
SkipAnd ` (skip ∧ f0) ; true ⊃ ¬((skip ∧ ¬f0) ; true)
BoxInduct ` f0 ∧ 2(f0 ⊃ ¬©¬f0) ⊃ 2 f0
ChopStarEqv ` f ∗

0 ≡ (empty ∨ ((f0 ∧ more) ; f ∗
0 ))

ChopStarInduct ` (inf ∧ f0 ∧ 2(f0 ⊃ (f1 ∧ fmore) ; f0)) ⊃ f ∗
1

MP ` f0 ⊃ f1 and ` f0 implies ` f1
BoxGen ` f0 implies ` 2 f0
BiGen ` f0 implies ` 2i f0



Algebraic semantics for PITL (13)
Can we give the semantic domain an algebraic structure?

Let [[f ]] denote the set of intervals for which [[f ]]σ = tt, i.e.,

[[f ]] =̂ {σ|[[f ]]σ = tt}

The ∨ of two PITL formula is then

[[f1 ∨ f2]] =
— definition of [[ ]]
{σ|[[f1 ∨ f2]]σ = tt}
— definition of [[f1 ∨ f2]]σ
{σ|[[f1]]σ = tt or [[f2]]σ = tt}
— set theory, let ∪ denote union
{σ|[[f1]]σ = tt} ∪ {σ|[[f2]]σ = tt}
— definition of [[ ]]
[[f1]] ∪ [[f2]]
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Algebraic semantics for PITL (14)

So we need algebraic operators that correspond to
¬,∨, skip, ; and ∗

∨ corresponds to union (∪) of sets of intervals
¬ corresponds to complement, i.e.,

[[¬f ]] =
— definition of [[ ]]
{σ|[[¬f ]]σ = tt}
— definition of [[¬f ]]σ
{σ|not ([[f ]]σ = tt)}
— set theory, let denote set complement
{σ|[[f ]]σ = tt}
— definition of [[ ]]

[[f ]]



Algebraic semantics for PITL (15)

What about chop (‘;’)?

Let · denote the fusion of two intervals σ1, σ2 ∈ Σ+ ∪Σω, i.e.,
Let a, b ∈ Σ (a and b are not the same), v ,w ∈ Σ∗ and
s, t ∈ Σω

σ1 · σ2 =̂



vaw if σ1 = va, σ2 = aw
∅ if σ1 = va, σ2 = bw
vas if σ1 = va, σ2 = as
∅ if σ1 = va, σ2 = bs
s if σ1 = s, σ2 = aw
s if σ1 = s, σ2 = t

Let S, T ⊆ Σ+ ∪ Σω then

S · T =̂ {σ1 · σ2|σ1 ∈ S and σ2 ∈ T}
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Algebraic semantics for PITL (16)

‘;’ corresponds to fusion ‘·’, i.e.,

[[f1 ; f2]] =
— definition of [[ ]]
{σ|[[f1 ; f2]]σ = tt}
— definition of [[f1 ; f2]]σ
{σ|(exists k , s.t. [[f1]]σ0...σk = tt and [[f2]]σk ...σ|σ| = tt)

or (σ is infinite and [[f1]]σ = tt)}
— definition of ·
{σ|[[f1]]σ = tt} · {σ|[[f2]]σ = tt}
— definition of [[ ]]
[[f1]] · [[f2]]



Algebraic semantics for PITL (17)

What about empty?

[[empty]] =
— definition of [[ ]]
{σ|[[empty]]σ = tt}
— definition of [[empty]]σ
{σ|σ is a 1 state interval}
— definition of Σ
Σ



Algebraic semantics for PITL (17)
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Algebraic semantics for PITL (18)

What about skip?
skip can be defined as Σ ∪ Σ · Σ

Σ ∪ Σ · Σ =
— De Morgan for set theory
Σ ∩ Σ · Σ

Σ is the set of intervals containing ≥ 2 states
Σ · Σ is the set of intervals containing ≥ 3 states
Σ · Σ is the set of intervals containing ≤ 2 states
Σ ∩ Σ · Σ is the set of intervals containing exactly 2 states
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Algebraic semantics for PITL (19)

What about a state formula, i.e., a formula without temporal
operators?

A state formula only constrains the first state of an interval.
Let p be a state formula. Then the following holds

[[p]] = ([[p]] ∩ Σ) · T

where
T =̂ [[true]] = Σ+ ∪ Σω

∅ =̂ [[false]] = ∅
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Algebraic semantics for PITL (20)

What about chopstar ‘∗’?

In the semantics of ‘∗’ both finite and infinite iteration are
considered simultaneously. Let’s define separate algebraic
operators for them.
Let S∗ and Sω denote respectively finite and infinite iteration
of a set S ⊆ Σ+ ∪ Σω and can be defined as follows

f (X) =̂ Σ ∪ S · X g(X) =̂ S · X
f 0(X) =̂ X g0(X) =̂ X
f i+1(X) =̂ f (f i(X)) gi+1(X) =̂ g(gi(X))
S∗ =̂

⋃
i f i(∅) Sω =̂

⋂
igi(T)

Then we have

[[f ∗]] = . . . = [[f ]]∗ ∪ [[f ]]ω
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Kleene and Omega Algebra (21)
Let K denote P(Σ+ ∪ Σω),
(K ,∪, ∅, ·,Σ) is an idempotent left semiring iff
(for a, b, c ∈ K )

(K ,∪, ∅) is a commutative monoid , i.e.,
a ∪ b = b ∪ a
a ∪ ∅= a
a ∪ (b ∪ c) = (a ∪ b) ∪ c
(K , ·,Σ) is a monoid, i.e.,
a · Σ = a
Σ · a = a
a · (b · c) = (a · b) · c
(a ∪ b) · c = a · c ∪ b · c
∅ · a = ∅
a ∪ a = a
b ⊆ c implies a · b ⊆ a · c where a ⊆ b iff a ∪ b = b
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Kleene and Omega Algebra (22)

(K , ) is a Boolean idempotent left semiring iff
(K ,∪, ∅, ·,Σ) is an idempotent left semiring

a = (a ∪ b) ∪ (a ∪ b) (Huntington equation)

As usual we have the following

a ∩ b = a ∪ b
T = a ∪ a (greatest element w.r.t. ⊆, i.e. Σ+ ∪ Σω)
∅ = a ∩ a (smallest element w.r.t. ⊆, i.e., ∅)
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Kleene and Omega Algebra (23)

(K , ∗) is a Boolean strong left (lazy) Kleene algebra iff
(K , ) is a Boolean idempotent left semiring
Σ ∪ a · a∗ ⊆ a∗

b ∪ a · c ⊆ c implies a∗ · b ⊆ c
b ∪ c · a ⊆ c implies b · a∗ ⊆ c

(K , ω) is a Boolean left (lazy) omega algebra iff
(K , ∗) is a Boolean strong left (lazy) Kleene algebra
aω = a · aω

c ⊆ b ∪ a · c implies c ⊆ aω ∪ a∗ · b
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Interval Temporal Algebra (24)

(K , ω) is an interval temporal algebra iff
Let skip =̂ Σ ∪ Σ · Σ, finite =̂ T · ∅ and 2a =̂ finite · a

P1 (K , ω) is a Boolean left (lazy) omega algebra
P2 a · (b ∪ c)⊆ a · b ∪ a · c
P3 (skip∩a)·c∩(skip∩b)·d =(skip∩a∩b)·(c∩d)

P4 c ·(skip∩a)∩d ·(skip∩b)=(c∩d)·(skip∩a∩b)

P5 (Σ∩ a) · c ∩ (Σ∩ b) · d = (Σ∩ a ∩ b) · (c ∩ d)

P6 c · (Σ∩ a)∩ d · (Σ∩ b) = (c ∩ d) · (Σ∩ a ∩ b)

P7 finite⊆ skip∗

P8 skip · a = Σ ∪ skip · a
P9 a · skip = Σ ∪ a · skip



Axiom/proof system for PITL (25)

PropAx All axioms for propositional logic
ChopAssoc ` (f0 ; f1) ; f2 ≡ f0 ; (f1 ; f2)
OrChopImp ` (f0 ∨ f1) ; f2 ⊃ (f0 ; f2) ∨ (f1 ; f2)
ChopOrImp ` f0 ; (f1 ∨ f2) ⊃ (f0 ; f1) ∨ (f0 ; f2)
EmptyChop ` empty ; f1 ≡ f1
ChopEmpty ` f1 ; empty ≡ f1
BiBoxChop ` 2i (f0 ⊃ f1) ∧ 2(f2 ⊃ f3) ⊃ (f0 ; f2) ⊃ (f1 ; f3)
StateImpBi ` p ⊃ 2i p
NextImpWNext ` ©f0 ⊃ ¬©¬f0
SkipAnd ` (skip ∧ f0) ; true ⊃ ¬((skip ∧ ¬f0) ; true)
BoxInduct ` f0 ∧ 2(f0 ⊃ ¬©¬f0) ⊃ 2 f0
ChopStarEqv ` f ∗

0 ≡ (empty ∨ ((f0 ∧ more) ; f ∗
0 ))

ChopStarInduct ` (inf ∧ f0 ∧ 2(f0 ⊃ (f1 ∧ fmore) ; f0)) ⊃ f ∗
1

MP ` f0 ⊃ f1 and ` f0 implies ` f1
BoxGen ` f0 implies ` 2 f0
BiGen ` f0 implies ` 2i f0



Examples of proof in ITA (26)

Example

finite · Σ
— a · Σ = a

= finite

Example

(T · ∅) · ∅
— a · (b · c) = (a · b) · c

= T · (∅ · ∅)
— ∅ · a = ∅

= T · ∅



ITA vs PITL (27)

Theorem
PITL is an interval temporal algebra

Theorem
PITL’s axiom/proof system can be derived from ITA’s axiom
system



Automatic theorem prover for PITL (28)

Take an off-the-shelf automatic theorem prover (ATP)
encode the algebraic rules for an interval temporal
algebra within it

We used Prover9 as ATP and encoded the interval temporal
algebraic rules.

Proved more than 350 PITL theorems so far
Derived all PITL axioms/proof rules from ITA’s axioms

Demo



Conclusion and future work (29)

An interval temporal algebraic encoding of PITL in
Prover9 results in quite a useful tool
need to reduce the axioms of ITA
replace some of the more complex axioms of ITA by
simpler ones,
Use a different ATP
Integration of Description Logic axiom system with
Interval Temporal Algebra axiom system
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